Assessing hERG Pore Models As Templates for Drug Docking Using Published Experimental Constraints: The Inactivated State in the Context of Drug Block

نویسندگان

  • Christopher E. Dempsey
  • Dominic Wright
  • Charlotte K. Colenso
  • Richard B. Sessions
  • Jules C. Hancox
چکیده

Many structurally and therapeutically diverse drugs interact with the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced 'long QT syndrome'. Drug binding to hERG is often stabilized by inactivation gating. In the absence of a crystal structure, hERG pore homology models have been used to characterize drug interactions. Here we assess potentially inactivated states of the bacterial K+ channel, KcsA, as templates for inactivated state hERG pore models in the context of drug binding using computational docking. Although Flexidock and GOLD docking produced low energy score poses in the models tested, each method selected a MthK K+ channel-based model over models based on the putative inactivated state KcsA structures for each of the 9 drugs tested. The variety of docking poses found indicates that an optimal arrangement for drug binding of aromatic side chains in the hERG pore can be achieved in several different configurations. This plasticity of the drug "binding site" is likely to be a feature of the hERG inactivated state. The results demonstrate that experimental data on specific drug interactions can be used as structural constraints to assess and refine hERG homology models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the pH in state-dependent blockade of hERG currents

Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open an...

متن کامل

Ranolazine inhibition of hERG potassium channels: Drug–pore interactions and reduced potency against inactivation mutants

The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cel...

متن کامل

Probing the Interaction Between Inactivation Gating and D-Sotalol Block of HERG

Potassium channels encoded by HERG underlie IKr, a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as D-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop in ...

متن کامل

Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking

The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant ...

متن کامل

Probing the interaction between inactivation gating and Dd-sotalol block of HERG.

Potassium channels encoded by HERG underlie I:(Kr), a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as Dd-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2014